- Basic forms - In theory, any polygon can be used, as long as the edges are perpendicular. Here are some examples. You can let your fantasy run wildd. I've opted for the first form to emphasize what I'm saying. |
![]() ![]() ![]() ![]() |
#declare Size = 1.0; #declare Round = 0.10;Next, the number of points and, for each point, the coordinates. All this is stored in a table.
#declare NumberOfPoints = 8; #declare PointsOfShape = array [NumberOfPoints] { <Round, Round, Round>, // 0 <Round, Round, Size+Round>, // 1 <-Size+Round, Round, Size+Round>, // 2 <-Size+Round, Round, 2*Size-Round>, // 3 <2*Size-Round, Round, 2*Size-Round>, // 4 <2*Size-Round, Round, Size+Round>, // 5 <Size-Round, Round, Size+Round>, // 6 <Size-Round, Round, Round> // 7 }Note the addition or removal of radius "Round" for each point. In the plane there's no curvature so, the body of the shape is a simple prism. We can create a macro to build the complete shape, a simple assembly of spheres, cylinders and prism. The array containing all the points is passed to the macro as a parameter.
#macro BuildShape (p) // p : array of points #local n = dimension_size(p,1); #local r = p[0].y; union { // --- spheres --- #local i = 0; #while ( i < n ) sphere { p[i], r } inc(i) #end // --- cylinders --- #local i = 0; #while ( i < n ) cylinder { p[i], p[mod(i+1,n)], r } inc(i) #end // --- prism --- prism { // default linear_spline p[0].y-r, // lower y p[0].y+r, // upper y n+1, // number of points #local i = 0; #while ( i < n ) <p[i].x, p[i].z>, inc(i) #end // --- to avoid message about closing <p[0].x, p[0].z> } } #endWe then obtain :
#declare TheShape = union { object { Shape pigment { color Color1 } } object { Shape rotate 90*z translate Size*<3,1,0> pigment { color Color2 } } object { Shape rotate 180*z translate Size*<2,4,0> pigment { color Color1 } } object { Shape rotate 270*z translate Size*<-1,3,0> pigment { color Color2 } } }Covering the plane with this shape is then done using two nested loops :
#declare ThePlane = union { #declare xIndex = xMin; #while ( xIndex < xMax ) #declare zIndex = zMin; #while ( zIndex < zMax ) object { TheShape translate zIndex*(4*Size)*z translate xIndex*(4*Size)*x } inc(zIndex) #end inc(xIndex) #end }
#declare Angle = 8; // in degrees #declare Radius = 8;The table still contains the coordinates of the points, but they are defined directly on the cylinder (with a little trigonometry) in this way :
#declare Points[0] = <Radius*cosd(-1.5*Angle), Round, Radius*sind(-1.5*Angle)>; #declare Points[1] = <Radius*cosd(-1.5*Angle), Size, Radius*sind(-1.5*Angle)>; #declare Points[2] = <Radius*cosd(-0.5*Angle), Size, Radius*sind(-0.5*Angle)>; #declare Points[3] = <Radius*cosd(-0.5*Angle), 2*Size, Radius*sind(-0.5*Angle)>; #declare Points[4] = <Radius*cosd(+0.5*Angle), 2*Size, Radius*sind(+0.5*Angle)>; #declare Points[5] = <Radius*cosd(+0.5*Angle), 1*Size, Radius*sind(+0.5*Angle)>; #declare Points[6] = <Radius*cosd(+1.5*Angle), 1*Size, Radius*sind(+1.5*Angle)>; #declare Points[7] = <Radius*cosd(+1.5*Angle), Round, Radius*sind(+1.5*Angle)>;As I said earlier, vertical rods are still cylinders, but horizontal rods require the creation of arcs of torus. The general way to obtain a torus arc is :
difference { torus { Radius, Round } plane { z, 0 rotate +0.5*Angle*y } plane { z, 0 rotate -0.5*Angle*y inverse } }Once the points and edges have been built, we need to deal with the body. Just like "torus arcs", we need to create "cylinder arcs". This part is obtained in this way and is very similar to the data above :
difference { cylinder { <0, Size, 0>, <0, 2*Size, 0>, Radius+Round } cylinder { <0, Size-1, 0>, <0, 2*Size+1, 0>, Radius-Round } plane { z, 0 rotate +0.5*Angle*y } plane { z, 0 rotate -0.5*Angle*y inverse } }With all of this we get :
#macro LonLat2Rectangular (rSphere, Longitude, Latitude) #local yy = rSphere*sind(Latitude); #local l = rSphere*cosd(Latitude); #local xx = l*cosd(Longitude); #local zz = l*sind(Longitude); #if (sqrt(xx*xx+yy*yy+zz*zz) != rSphere) #error "oops something's wrong !" #endThe dimensions of the shape are defined not by distances, but by angles. The "SolidAngle" macro is used to construct these sphere pieces. Angles are expressed in degrees. Note also the use of a cone { } to cut out the sphere.#end
#macro SolidAngle (rSphere, eSphere, Longitude0, Longitude1, Latitude0, Latitude1) #local ALong = abs(Longitude0-Longitude1); difference { sphere { <0,0,0>, rSphere+eSphere } sphere { <0,0,0>, RSphere-eSphere } plane { z, 0 } plane { z, 0 rotate -ALong*y inverse } #if ( Latitude1 < 90) cone { <0,0,0>, 0, <0, RSphere*2, 0>, RSphere*2*tand(90-Latitude1) } #end cone { <0,0,0>, 0, <0, RSphere*2, 0>, RSphere*2*tand(90-Latitude0) inverse } rotate -Longitude0*y } #endThe rods on the meridians are torus arcs whose radius is equal to the radius of the sphere. For the rods on the parallels, the radius depends on the latitude and can be calculated in this way:
#local RadiusAtLatitude = rSphere*cosd(Latitude); #local YAtLatitude = rSphere*sind(Latitude);Finally, we obtain this shape :